

TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRANSISTOR

CNY17-2, CNY17-3, CNY17-4

AC LINE/DIGITAL LOGIC ISOLATOR

DIGITAL LOGIC / DIGITAL LOGIC ISOLATOR

TELEPHONE LINE RECEIVER

TWISTED PAIR LINE RECEIVER

HIGH FREQUENCY POWER SUPPLY FEEDBACK CONTROL

RELAY CONTACT MONITOR

The TOSHIBA Corporation CNY17 consist of a gallium arsenide infrared emitting diode coupled with a silicon photo transistor in a dual in-line package.

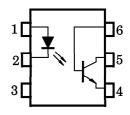
Small Package Size and Low Cost

• Fast Switching Speeds : $5\mu s$ (TYP.)

• High DC Current Transfer Ratio: CTR (I_F=10mA, V_{CE}=5V)

CNY17-2:63~125% CNY17-3:100~200% CNY17-4:160~320%

High Isolation Resistance : 10¹¹Ω (TYP.)
 High Isolation Voltage : 4400V (MIN.)


11-7A8

Unit in mm

Weight: 0.4g

TOSHIBA

PIN CONFIGURATION

1: ANODE

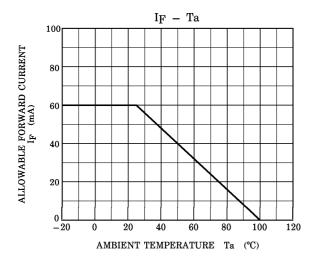
2 : CATHODE

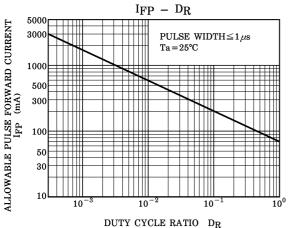
3 : N.C.

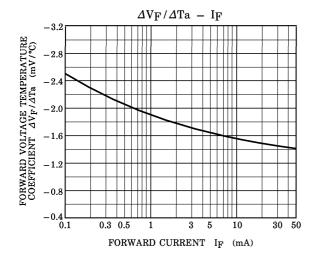
4 : EMITTER

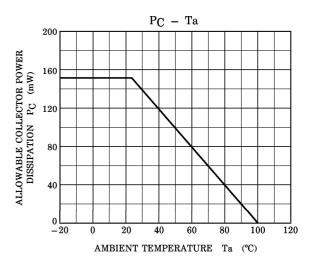
5 : COLLECTOR

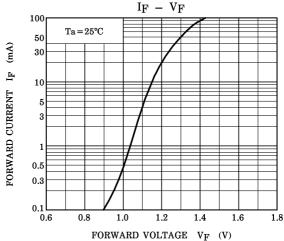
6:BASE

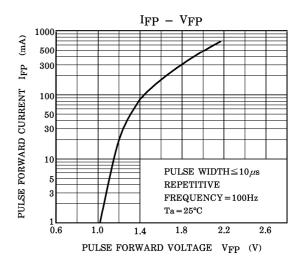

MAXIMUM RATINGS (Ta = 25°C)

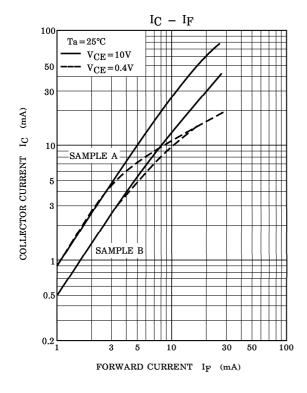

	CHARACTERISTIC	SYMBOL	RATING	UNIT	
LED	Forward Current	$I_{\mathbf{F}}$	60	mA	
	Forward Current Derating	$\Delta I_{\mathbf{F}}/^{\circ}\mathbf{C}$	0.8*	mA/°C	
	Peak Forward Current (Note)	$I_{ m PF}$	3	A	
	Power Dissipation	P_{D}	100	mW	
	Power Dissipation Derating	$\Delta P_{\mathbf{D}} / {^{\circ}\mathbf{C}}$	1.33*	mW/°C	
	Reverse Voltage	v_{R}	6	V	
OR	Collector-Emitter Voltage	BVCEO	70	v	
ISI	Collector-Base Voltage	BVCBO	70	V	
PHOTO-TRANSISTOR	Emitter-Collector Voltage	BVECO	7	V	
	Collector Current	$I_{\mathbb{C}}$	100	mA	
	Power Dissipation	PC	150	mW	
PHC	Power Dissipation Derating	ΔP _C /°C	2.0*	mW/°C	
	Storage Temperature	$\mathrm{T_{stg}}$	-55~150	°C	
	Operating Temperature	$T_{ m opr}$	-55~100	°C	
COUPLED	Lead Soldering Temperature (10s)	T _{sol}	260	$^{\circ}\mathrm{C}$	
	Total Package Dissipation	P_{T}	200	mW	
	Total Package Power Dissipation Derating	$\Delta \mathrm{P_T}/\mathrm{^{\circ}C}$	2.6*	mW/°C	

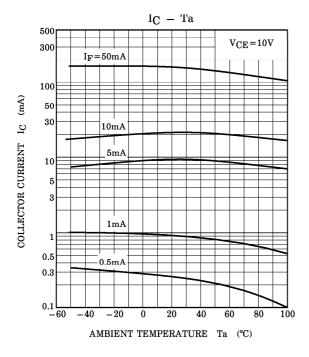

(Note) Pulse Width $1\mu s$, 300pps. * Above 25°C ambient.

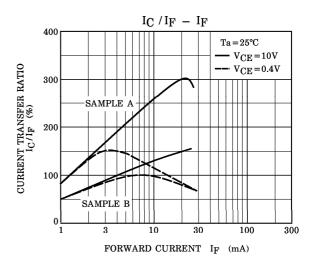

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

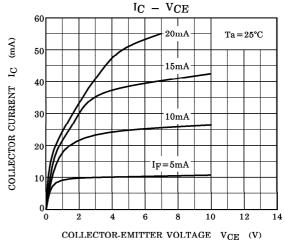

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
LED	Forward Voltage		$ m V_{ m F}$	$I_{\mathbf{F}} = 60 \text{mA}$	_	1.35	1.65	V
	Reverse Current		I_{R}	$V_R=3V$	_	_	10	μ A
	Capacitance		$C_{\mathbf{D}}$	V=0, f=1MHz	_	30	_	pF
PHOTO-TRANS I STOR	DC Forward Current Gain		hFE	$V_{CE} = 5, I_{C} = 500 \mu A$	100	200	_	
	Collector-Emitter Breakdown Voltage		V (BR) CEO	$I_C=1$ mA, $I_F=0$	70	_	_	V
	Collector-Base Breakdown Voltage		V (BR) CBO	$I_{C} = 100 \mu A, I_{F} = 0$	70	_	_	V
	Emitter-Collector Breakdown Voltage		V _{(BR)ECO}	$I_{\rm E} = 100 \mu {\rm A}, \ I_{\rm F} = 0$	7	_	_	V
	Collector Dark Current		I_{CEO}	$V_{CE} = 10V, I_F = 0$	_	1	50	nA
	Collector Dark Current		I_{CBO}	$V_{CB} = 10V, I_F = 0$	_	0.1	20	nA
	Collector-Emitter Capacitance		c_{CE}	V=0, f=1MHz	_	10	_	pF
	Current CNY17-2 Transfer CNY17-3 Ratio CNY17-4	CNY17-2			63	_	125	
		CTR	$I_F = 10 \text{mA}, \ V_{CE} = 5 \text{V}$	100	_	200	%	
		CNY17-4			160	_	320	
	Saturation Voltage		V _{CE} (sat)	I_{F} =10mA, I_{C} =2.5mA	_	_	0.4	V
COUPLED	Capacitance Input to Output		c_{S}	V=0, f=1MHz	_	0.8	_	pF
	Isolation Resistance		$R_{\mathbf{S}}$	V = 500V	_	10^{11}	_	Ω
	DC Isolation Voltage		$BV_{\mathbf{S}}$	DC 1 minute	4400	_	_	V
	Rise Fall Time		t_r/t_f	$V_{CE}=10V,~I_{C}=2mA$ $R_{L}=100\Omega$	_	5	10	μs
	Rise / Fall Time Photo Diode		$t_{\mathbf{r}}/t_{\mathbf{f}}$	V_{CB} =10V, I_{CB} =50 μ A R_{L} =100 Ω	_	200	_	ns

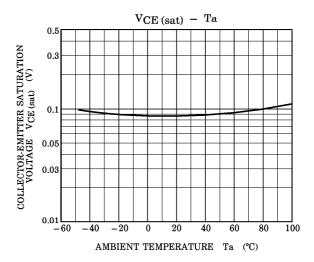


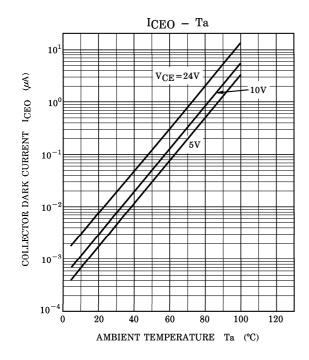


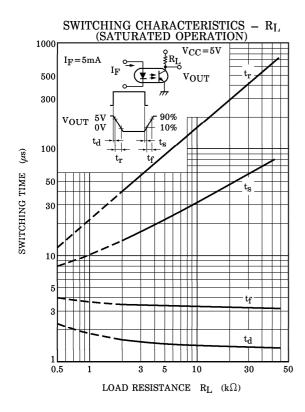


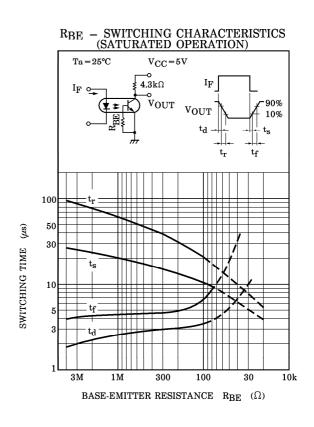












5 2001-06-01

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

7 2001-06-01